Transformer model¶
In [1]:
Copied!
#!pip install deepts_forecasting
#!pip install deepts_forecasting
Import libraries¶
In [2]:
Copied!
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.transformer import TransformerModel
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.transformer import TransformerModel
Dataset¶
In [3]:
Copied!
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
Out[3]:
| Month | Passengers | year | month | group | time_idx | |
|---|---|---|---|---|---|---|
| 0 | 1949-01-01 | 112.0 | 1949 | 1 | 0 | 0 |
| 1 | 1949-02-01 | 118.0 | 1949 | 2 | 0 | 1 |
| 2 | 1949-03-01 | 132.0 | 1949 | 3 | 0 | 2 |
| 3 | 1949-04-01 | 129.0 | 1949 | 4 | 0 | 3 |
| 4 | 1949-05-01 | 121.0 | 1949 | 5 | 0 | 4 |
Split train/test sets¶
In [4]:
Copied!
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
Define model¶
In [7]:
Copied!
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = TransformerModel.from_dataset(training,
dim_feedforward=32,
n_head=1,
n_layers=2,
d_model=16,
)
model.summarize
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = TransformerModel.from_dataset(training,
dim_feedforward=32,
n_head=1,
n_layers=2,
d_model=16,
)
model.summarize
Global seed set to 123 GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs
Out[7]:
<bound method LightningModule.summarize of TransformerModel(
(loss): L1Loss()
(logging_metrics): ModuleList()
(encoder_input_linear): Linear(in_features=7, out_features=16, bias=True)
(decoder_input_linear): Linear(in_features=6, out_features=16, bias=True)
(encoder_positional_encoding): PositionalEncoding(
(dropout): Dropout(p=0.1, inplace=False)
)
(decoder_positional_encoding): PositionalEncoding(
(dropout): Dropout(p=0.1, inplace=False)
)
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(linear1): Linear(in_features=16, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=32, out_features=16, bias=True)
(norm1): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
(1): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(linear1): Linear(in_features=16, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=32, out_features=16, bias=True)
(norm1): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(transformer_decoder): TransformerDecoder(
(layers): ModuleList(
(0): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(linear1): Linear(in_features=16, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=32, out_features=16, bias=True)
(norm1): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
(1): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=16, out_features=16, bias=True)
)
(linear1): Linear(in_features=16, out_features=32, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=32, out_features=16, bias=True)
(norm1): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
)
)
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(out_linear): Linear(in_features=16, out_features=1, bias=True)
(embeddings): ModuleDict(
(month): Embedding(12, 6)
)
)>
In [8]:
Copied!
model.hparams
model.hparams
Out[8]:
"activation": relu
"categorical_groups": {}
"d_model": 16
"dim_feedforward": 32
"dropout": 0.1
"embedding_labels": {'month': array(['1', '10', '11', '12', '2', '3', '4', '5', '6', '7', '8', '9'],
dtype=object)}
"embedding_paddings": []
"embedding_sizes": {'month': [12, 6]}
"learning_rate": 0.001
"log_interval": -1
"log_val_interval": None
"logging_metrics": ModuleList()
"loss": L1Loss()
"max_encoder_length": 18
"max_prediction_length": 12
"monotone_constaints": {}
"n_head": 1
"n_layers": 2
"output_size": 1
"output_transformer": TorchNormalizer()
"static_categoricals": []
"static_reals": []
"time_varying_categoricals_decoder": ['month']
"time_varying_categoricals_encoder": ['month']
"time_varying_reals_decoder": []
"time_varying_reals_encoder": ['Passengers']
"x_categoricals": ['month']
"x_reals": ['Passengers']
Train model with early stopping¶
In [10]:
Copied!
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = TransformerModel.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions, x_index = best_model.predict(val_dataloader)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = TransformerModel.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions, x_index = best_model.predict(val_dataloader)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
| Name | Type | Params
-------------------------------------------------------------------
0 | loss | L1Loss | 0
1 | logging_metrics | ModuleList | 0
2 | encoder_input_linear | Linear | 128
3 | decoder_input_linear | Linear | 112
4 | encoder_positional_encoding | PositionalEncoding | 0
5 | decoder_positional_encoding | PositionalEncoding | 0
6 | transformer_encoder | TransformerEncoder | 4.5 K
7 | transformer_decoder | TransformerDecoder | 6.7 K
8 | out_linear | Linear | 17
9 | embeddings | ModuleDict | 72
-------------------------------------------------------------------
11.5 K Trainable params
0 Non-trainable params
11.5 K Total params
0.046 Total estimated model params size (MB)
D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\pytorch_lightning\callbacks\model_checkpoint.py:631: UserWarning: Checkpoint directory lightning_logs\default\version_17\checkpoints exists and is not empty.
rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
Global seed set to 123
tensor([[[417.0000],
[391.0000],
[419.0000],
[461.0000],
[472.0000],
[535.0000],
[622.0000],
[606.0000],
[508.0000],
[461.0000],
[390.0000],
[432.0000]],
[[350.6286],
[331.8389],
[368.7483],
[367.6466],
[376.8046],
[437.5001],
[456.6611],
[470.3661],
[442.6349],
[358.7311],
[334.2704],
[360.6251]]], dtype=torch.float64)
MAE is: tensor(88.1287, dtype=torch.float64)