TCN model¶
In [1]:
Copied!
#!pip install deepts_forecasting
#!pip install deepts_forecasting
Import libraries¶
In [3]:
Copied!
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.tcn.tcn import TCNModel
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.tcn.tcn import TCNModel
D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
Dataset¶
In [4]:
Copied!
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
Out[4]:
Month | Passengers | year | month | group | time_idx | |
---|---|---|---|---|---|---|
0 | 1949-01-01 | 112.0 | 1949 | 1 | 0 | 0 |
1 | 1949-02-01 | 118.0 | 1949 | 2 | 0 | 1 |
2 | 1949-03-01 | 132.0 | 1949 | 3 | 0 | 2 |
3 | 1949-04-01 | 129.0 | 1949 | 4 | 0 | 3 |
4 | 1949-05-01 | 121.0 | 1949 | 5 | 0 | 4 |
Split train/test sets¶
In [6]:
Copied!
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
Define model¶
In [7]:
Copied!
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = TCNModel.from_dataset(training,
kernel_size=2,
num_filters=16,
num_layers=2,
dilation_base=2,
weight_norm=False,
target_size=1,
dropout=0.2,
)
model.summarize
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = TCNModel.from_dataset(training,
kernel_size=2,
num_filters=16,
num_layers=2,
dilation_base=2,
weight_norm=False,
target_size=1,
dropout=0.2,
)
model.summarize
Global seed set to 123 GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs
Out[7]:
<bound method LightningModule.summarize of TCNModel( (loss): MSELoss() (logging_metrics): ModuleList() (dropout): Dropout(p=0.2, inplace=False) (out_linear): Linear(in_features=18, out_features=12, bias=True) (res_blocks): ModuleList( (0): ResidualBlock( (dropout_fn): Dropout(p=0.2, inplace=False) (conv1): Conv1d(1, 16, kernel_size=(2,), stride=(1,)) (conv2): Conv1d(16, 16, kernel_size=(2,), stride=(1,)) (conv3): Conv1d(1, 16, kernel_size=(1,), stride=(1,)) ) (1): ResidualBlock( (dropout_fn): Dropout(p=0.2, inplace=False) (conv1): Conv1d(16, 16, kernel_size=(2,), stride=(1,), dilation=(2,)) (conv2): Conv1d(16, 1, kernel_size=(2,), stride=(1,), dilation=(2,)) (conv3): Conv1d(16, 1, kernel_size=(1,), stride=(1,)) ) ) )>
In [8]:
Copied!
model.hparams
model.hparams
Out[8]:
"dilation_base": 2 "dropout": 0.2 "input_length": 18 "kernel_size": 2 "learning_rate": 0.001 "log_interval": -1 "log_val_interval": None "logging_metrics": ModuleList() "loss": MSELoss() "monotone_constaints": {} "num_filters": 16 "num_layers": 2 "output_transformer": TorchNormalizer() "prediction_length": 12 "reals": ['Passengers'] "target_size": 1 "weight_norm": False
Train model with early stopping¶
In [ ]:
Copied!
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
Model saved and inference¶
In [ ]:
Copied!
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = TCNModel.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions, target = best_model.predict(val_dataloader,return_target=True)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = TCNModel.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions, target = best_model.predict(val_dataloader,return_target=True)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
In [ ]:
Copied!
best_model.plot_prediction(target,predictions)
best_model.plot_prediction(target,predictions)