DeepAR model¶
In [1]:
Copied!
#!pip install deepts_forecasting
#!pip install deepts_forecasting
Import libraries¶
In [2]:
Copied!
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.deepar import DeepAR
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from deepts_forecasting.utils.data import TimeSeriesDataSet
from deepts_forecasting.utils.data.encoders import TorchNormalizer
from deepts_forecasting.datasets import AirPassengersDataset
from deepts_forecasting.models.deepar import DeepAR
D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
Dataset¶
In [3]:
Copied!
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
data = AirPassengersDataset().load()
data['year'] = data['Month'].dt.year
data['month'] = data['Month'].dt.month
data['group'] = '0'
data['time_idx'] = np.arange(len(data))
data['Passengers'] = data['Passengers'].astype(float)
data['month'] = data['month'].astype('str')
data.head()
Out[3]:
| Month | Passengers | year | month | group | time_idx | |
|---|---|---|---|---|---|---|
| 0 | 1949-01-01 | 112.0 | 1949 | 1 | 0 | 0 |
| 1 | 1949-02-01 | 118.0 | 1949 | 2 | 0 | 1 |
| 2 | 1949-03-01 | 132.0 | 1949 | 3 | 0 | 2 |
| 3 | 1949-04-01 | 129.0 | 1949 | 4 | 0 | 3 |
| 4 | 1949-05-01 | 121.0 | 1949 | 5 | 0 | 4 |
Split train/test sets¶
In [4]:
Copied!
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
max_encoder_length = 18
max_prediction_length = 12
training_cutoff = data["time_idx"].max() - max_encoder_length - max_prediction_length
training = TimeSeriesDataSet(
data[lambda x: x.time_idx <= training_cutoff],
max_encoder_length= max_encoder_length,
min_encoder_length=max_encoder_length,
max_prediction_length=max_prediction_length,
min_prediction_length=max_prediction_length,
time_idx="time_idx",
target="Passengers",
group_ids=["group"],
static_categoricals=[],
static_reals=[],
time_varying_known_categoricals=['month'],
time_varying_known_reals=[],
time_varying_unknown_reals=["Passengers"],
time_varying_unknown_categoricals=[],
target_normalizer=TorchNormalizer(method="standard",
transformation=None),
)
training.get_parameters()
validation = TimeSeriesDataSet.from_dataset(training,
data[lambda x: x.time_idx > training_cutoff])
batch_size = 16
train_dataloader = DataLoader(training, batch_size=batch_size, shuffle=False, drop_last=False)
val_dataloader = DataLoader(validation, batch_size=batch_size, shuffle=False, drop_last=False)
Define model¶
In [5]:
Copied!
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = DeepAR.from_dataset(training,
hidden_size=32,
rnn_layers=3,
)
model.summarize
pl.seed_everything(123)
# create PyTorch Lighning Trainer with early stopping
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4,
patience=60, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
max_epochs=300,
gpus=0, # run on CPU, if on multiple GPUs, use accelerator="ddp"
gradient_clip_val=0.1,
limit_train_batches=30, # 30 batches per epoch
callbacks=[lr_logger, early_stop_callback],
logger=TensorBoardLogger("lightning_logs")
)
model = DeepAR.from_dataset(training,
hidden_size=32,
rnn_layers=3,
)
model.summarize
Global seed set to 123 GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs
Out[5]:
<bound method LightningModule.summarize of DeepAR(
(loss): NormalDistributionLoss()
(logging_metrics): ModuleList()
(mu_layer): Linear(in_features=32, out_features=1, bias=True)
(sigma_layer): Linear(in_features=32, out_features=1, bias=True)
(activation): Softplus(beta=1, threshold=20)
(encode_rnn): LSTM(7, 32, num_layers=3, batch_first=True)
(decode_rnn): LSTM(6, 32, num_layers=3, batch_first=True)
(embeddings): ModuleDict(
(month): Embedding(12, 6)
)
)>
In [6]:
Copied!
model.hparams
model.hparams
Out[6]:
"categorical_groups": {}
"embedding_labels": {'month': array(['1', '10', '11', '12', '2', '3', '4', '5', '6', '7', '8', '9'],
dtype=object)}
"embedding_paddings": []
"embedding_sizes": {'month': [12, 6]}
"hidden_size": 32
"learning_rate": 0.001
"log_interval": -1
"log_val_interval": None
"logging_metrics": ModuleList()
"loss": NormalDistributionLoss()
"max_encoder_length": 18
"max_prediction_length": 12
"monotone_constaints": {}
"output_transformer": TorchNormalizer()
"rnn_layers": 3
"static_categoricals": []
"static_reals": []
"time_varying_categoricals_decoder": ['month']
"time_varying_categoricals_encoder": ['month']
"time_varying_reals_decoder": []
"time_varying_reals_encoder": ['Passengers']
"x_categoricals": ['month']
"x_reals": ['Passengers']
Train model with early stopping¶
In [7]:
Copied!
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = DeepAR.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions = best_model.predict(val_dataloader)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
trainer.fit(
model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)
# (given that we use early stopping, this is not necessarily the last epoch)
best_model_path = trainer.checkpoint_callback.best_model_path
best_model = DeepAR.load_from_checkpoint(best_model_path)
# calcualte mean absolute error on validation set
actuals = torch.cat([model.transform_output(prediction=y, target_scale=x['target_scale'])
for x, y in iter(val_dataloader)])
predictions = best_model.predict(val_dataloader)
mae = (actuals - predictions).abs().mean()
# print('predictions shape is:', predictions.shape)
# print('actuals shape is:', actuals.shape)
print(torch.cat([actuals, predictions]))
print('MAE is:', mae)
D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\pytorch_lightning\trainer\trainer.py:735: LightningDeprecationWarning: `trainer.fit(train_dataloader)` is deprecated in v1.4 and will be removed in v1.6. Use `trainer.fit(train_dataloaders)` instead. HINT: added 's' rank_zero_deprecation( | Name | Type | Params ----------------------------------------------------------- 0 | loss | NormalDistributionLoss | 0 1 | logging_metrics | ModuleList | 0 2 | mu_layer | Linear | 33 3 | sigma_layer | Linear | 33 4 | activation | Softplus | 0 5 | encode_rnn | LSTM | 22.1 K 6 | decode_rnn | LSTM | 22.0 K 7 | embeddings | ModuleDict | 72 ----------------------------------------------------------- 44.3 K Trainable params 0 Non-trainable params 44.3 K Total params 0.177 Total estimated model params size (MB)
D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\pytorch_lightning\trainer\data_loading.py:132: UserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance. rank_zero_warn( Global seed set to 123 D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\pytorch_lightning\trainer\data_loading.py:132: UserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance. rank_zero_warn( D:\Anaconda3\envs\DeepTS_Forecasting\lib\site-packages\pytorch_lightning\trainer\data_loading.py:432: UserWarning: The number of training samples (6) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch. rank_zero_warn(
Epoch 75: 100%|██████████| 7/7 [00:00<00:00, 29.41it/s, loss=0.0683, v_num=8, val_loss=19.80, train_loss=0.586]
tensor([[[417.0000],
[391.0000],
[419.0000],
[461.0000],
[472.0000],
[535.0000],
[622.0000],
[606.0000],
[508.0000],
[461.0000],
[390.0000],
[432.0000]],
[[392.7820],
[405.8823],
[433.1111],
[421.9375],
[418.5957],
[468.5001],
[492.4781],
[481.0977],
[422.1546],
[357.6677],
[326.4588],
[337.1531]]], dtype=torch.float64)
MAE is: tensor(67.8474, dtype=torch.float64)